In [1]:
# This line configures matplotlib to show figures embedded in the notebook,
# instead of opening a new window for each figure. More about that later.
# If you are using an old version of IPython, try using '%pylab inline' instead.
%matplotlib inline
from pysolve.model import Model
from pysolve.utils import is_close,round_solution
import matplotlib.pyplot as plt
In [2]:
def create_disinf1_model():
model = Model()
model.set_var_default(0)
model.var('Ck', desc='Real consumption')
model.var('C', desc='Consumption at current prices')
model.var('F', desc='Realized firm profits')
model.var('Fb', desc='Realized bank profits')
model.var('IN', desc='Stock of inventories at current costs')
model.var('INk', desc='Real inventories')
model.var('INke', desc='Expected real inventories')
model.var('INkt', desc='Target level of real inventories')
model.var('Ld', desc='Demand for loans')
model.var('Ls', desc='Supply of loans')
model.var('Mh', desc='Deposits held by households')
model.var('Mhk', desc='Real alue of deposits held by households')
model.var('Ms', desc='Supply of deposits')
model.var('N', desc='Employment level')
model.var('omegat', desc='Target real wage rate')
model.var('P', desc='Price level')
model.var('PIC', desc='Inflation rate of unit costs')
model.var('Rl', desc='Interest rate on loans')
model.var('Rm', desc='Interest rate on deposits')
model.var('RRc', desc='Real interest rate on bank loans')
model.var('S', desc='Sales at current prices')
model.var('Sk', desc='Real sales')
model.var('Ske', desc='Expected real sales')
model.var('UC', desc='Unit costs')
model.var('WB', desc='The wage bill')
model.var('Yk', desc='Real output')
model.var('YD', desc='Disposable income')
model.var('YDk', desc='Real disposable income')
model.var('YDkhs', desc='Haig-Simons measure of real disposable income')
model.var('YDkhse', desc='Expected HS real disposable income')
model.var('W', desc='Wage rate')
model.set_param_default(0)
model.param('alpha0', desc='Autonomous consumption')
model.param('alpha1', desc='Propensity to consume out of income')
model.param('alpha2', desc='Propensity to consume out of wealth')
model.param('beta', desc='Parameter in expectation formations on real sales')
model.param('eps', desc='Parameter in expectation formations on real disposable income')
model.param('gamma', desc='Speed of adjustment of inventories to the target level')
model.param('phi', desc='Mark-up on unit costs')
model.param('sigmat', desc='Target inventories to sales ratio')
model.param('omega0', desc='Exogenous component of the target real wage rate')
model.param('omega1', desc='Relation between the target real wage rate and productivity')
model.param('omega2', desc='Relation between the target real rate and the unemploment gap')
model.param('omega3', desc='Speed of adjustment of the wage rate')
model.param('ADD', desc='Spread of loans rate over the deposit rate')
model.param('Nfe', desc='Full employment level')
model.param('PR', desc='Labor productivity')
model.param('Rlbar', desc='Rate of interest on bank loans, set exogenously')
model.param('RRcbar', desc='Real interest rate on bank loans, set exogenously')
# The production decision
model.add('Yk = Ske + INke - INk(-1)')
model.add('INkt = sigmat*Ske')
model.add('INke = INk(-1) + gamma*(INkt - INk(-1))')
model.add('INk - INk(-1) = Yk - Sk')
model.add('Ske = beta*Sk(-1) + (1-beta)*Ske(-1)')
model.add('Sk = Ck')
model.add('N = Yk / PR')
model.add('WB = N*W')
model.add('UC = WB/Yk')
model.add('IN = INk*UC')
# The pricing decision
model.add('S = P*Sk')
model.add('F = S - WB + IN - IN(-1) - Rl(-1)*IN(-1)')
model.add('P = (1 + phi)*(1+RRc*sigmat)*UC')
# The banking system
model.add('Ld = IN')
model.add('Ls = Ld')
model.add('Ms = Ls')
model.add('Rm = Rl - ADD')
model.add('Fb = Rl(-1)*Ld(-1) - Rm(-1)*Mh(-1)')
model.add('PIC = (UC/UC(-1)) - 1')
model.add('RRc = RRcbar')
model.add('Rl = (1 + RRc)*(1 + PIC) - 1')
# The consumption decision
model.add('YD = WB + F + Fb + Rm(-1)*Mh(-1)')
model.add('Mh - Mh(-1) = YD - C')
model.add('YDkhs = Ck + (Mhk - Mhk(-1))')
model.add('YDk = YD/P')
model.add('C = Ck*P')
model.add('Mhk = Mh/P')
model.add('Ck = alpha0 + alpha1*YDkhse + alpha2*Mhk(-1)')
model.add('YDkhse = eps*YDkhs(-1) + (1 - eps)*YDkhse(-1)')
# The inflation process
model.add('omegat = omega0 + omega1*PR + omega2*(N/Nfe)')
model.add('W = W(-1)*(1 + omega3*(omegat(-1)-(W(-1)/P(-1))))')
return model
disinf1_parameters = [('alpha0', 15),
('alpha1', 0.8),
('alpha2', 0.1),
('beta', 0.9),
('eps', 0.8),
('gamma', 0.25),
('phi', 0.24),
('sigmat', 0.2),
('omega1', 1),
('omega2', 1.2),
('omega0', '0.8 - omega1*PR - omega2'),
('omega3', 0.3)]
disinf1_exogenous = [('ADD', 0.02),
('PR', 1),
('RRcbar', 0.04)]
disinf1_variables = [('W', 1),
('UC', 'W/PR'),
('P', '(1+phi)*(1+RRcbar*sigmat)*UC'),
('YDkhs', 'alpha0/(1-alpha1-alpha2*sigmat*UC/P)'),
('Ck', 'YDkhs'),
('Sk', 'Ck'),
('INk', 'sigmat*Sk'),
('IN', 'INk*UC'),
('Ld', 'IN'),
('Mh', 'Ld'),
('Mhk', 'Mh/P'),
('Ms', 'Mh'),
('Ls', 'Ld'),
('Ske', 'Sk'),
('YDkhse', 'YDkhs'),
('omegat', 'W/P'),
('Rl', '(1 + RRcbar) - 1'),
('Rm', 'Rl - ADD'),
('Nfe', 'Sk/PR')]
In [3]:
omega0 = create_disinf1_model()
omega0.set_values(disinf1_parameters)
omega0.set_values(disinf1_exogenous)
omega0.set_values(disinf1_variables)
# run to convergence
# Give the system more time to reach a steady state
for _ in xrange(15):
omega0.solve(iterations=1000, threshold=1e-6)
# shock the system
omega0.set_values({'omega0': -1.35})
for _ in xrange(40):
omega0.solve(iterations=100, threshold=1e-6)
In [4]:
caption = '''
Figure 9.4a Evolution of (Haig-Simons) real disposable income and of real
consumption following an increase in the rate of inflation, in a variant
where households take capital gains and losses from inflation into account
in their expenditure decisions and inflation has no real effects.'''
ydkhsdata = [s['YDkhs'] for s in omega0.solutions[5:]]
ckdata = [s['Ck'] for s in omega0.solutions[5:]]
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1.1, 1.1])
axes.tick_params(top='off', right='off')
axes.spines['top'].set_visible(False)
axes.spines['right'].set_visible(False)
axes.set_ylim(79.3, 85)
axes.plot(ydkhsdata, linestyle='-', color='r')
axes.plot(ckdata, linestyle='--', color='b')
# add labels
plt.text(15, 81, 'Real consumption')
plt.text(8, 82.2, 'Haig-Simons')
plt.text(8, 82, 'real disposable')
plt.text(8, 81.8, 'income')
fig.text(0.1, -.15, caption);
In [5]:
caption = '''
Figure 9.5a Evolution of real wealth, following an increase in the rate
of inflation, in a variant where households take capital gains and losses
from inflation into account in their expenditure decisions and inflation
has no real effects.'''
data = [s['Mhk'] for s in omega0.solutions[5:]]
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1.1, 1.1])
axes.tick_params(top='off', right='off')
axes.spines['top'].set_visible(False)
axes.spines['right'].set_visible(False)
axes.set_ylim(11, 15)
axes.plot(data, linestyle='--', color='b')
# add labels
plt.text(15, 12.8, 'Real wealth')
fig.text(0.1, -.15, caption);
In [6]:
caption = '''
Figure 9.6a Evolution of the rate of price inflation, following an increase
in the target real-wage of workers in a variant where households take capital
gains and losses from inflation into account in their expenditure decisions
and inflation has no real effects.'''
data = list()
for i in xrange(10, len(omega0.solutions)):
s = omega0.solutions[i]
s_1 = omega0.solutions[i-1]
data.append((s['P']/s_1['P'])-1)
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1.1, 1.1])
axes.tick_params(top='off', right='off')
axes.spines['top'].set_visible(False)
axes.spines['right'].set_visible(False)
axes.set_ylim(-0.01, .4)
axes.plot(data, linestyle='--', color='b')
# add labels
plt.text(15, .03, 'Inflation rate')
fig.text(0.1, -.15, caption);
In [ ]: